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i. The study of fracture at high temperature is of both theoretical and practical in- 
terest. At high temperatures and low stresses fracture develops by the propagation of a 
crack along the grain boundaries [i]. These cracks are called intercrystallite cracks. 

The development of cracks along the grain boundaries is due to a number of physical fac- 
tors. First of all, splitting of the grains along the boundaries at high temperatures is ca- 
pable of initiating cracks. These cracks grow perferentially along the boundaries due to a 
weakening of the cohesive forces (a reduction in the surface energy of the fracture) at the 
boundary, and also due to accelerated diffusion of atoms along the boundaries. The main time 
up to fracture is usually taken up in the development of the cracks [i]. 

In this paper we consider the problem of the kinetics of the development of an inter- 
crystallite crack due to diffusion mass transfer. While the crack increases, its volume in- 
creases due to diffusion transfer of material from the tip of the crack along the grain bound- 
ary. This mechanism by which the crack grows has been observed in experiments on a number 
of brittle materials [2]. A similar problem was formulated and solved previously by numeri- 
cal methods [2]. Below, we present an analytical solution for the stationary case. 

2. We will consider the following model of a stationarily growing crack shown in Fig. 
i. The crack occupies the half-plane ~ < 0, ~ = 0 in a moving system of coordinates con- 
nected with the tip of the crack (at the initial instant of time t = 0 the axes of the 
fixed system of coordinates x, y and the moving system of coordinates ~, n coincide). For a 
stationarily increasing crack we have 

where v i s  t he  r a t e  o f  g rowth  of  the  c r a c k  ( t h e  c r a c k  grows from l e f t  to  r i g h t  a l o n g  t he  x 
a x i s ) .  A l l  t he  q u a n t i t i e s  i n  t he  s t a t i o n a r y  mode can be r e p r e s e n t e d  by f u n c t i o n s  o f  ~, n or  
x -  v t ,  y .  The e x t e r n a l  l o a d s  p roduce  a t  t h e  t i p  o f  t he  c r a c k  a s t r e s s  i n t e n s i t y  f a c t o r  K, 
so t h a t  a l o n g  the  c o n t i n u a t i o n  o f  the  p l a n e  o f  t he  c r a c k  when ~ > 0 normal  s l i p p i n g  s t r e s s e s  
~yy(~) ~ ~0(~) a c t ,  where 

% (D A" ( 2 . 1 )  
V2.~ (~ + R) ' 

and R is the radius of curvature of the tip of the crack. In this formulation the accurate 
shape of the tip of the crack is not investigated. Expression (2.1) takes into account ap- 
proximately the finiteness of the crack thickness, and as R-+0 reduces to the usual equa- 
tion for the stresses from a crack-slit [i]. The introduction of R =~ O, as will be seen be- 
low, is essential for the concrete formulation of the problem. When normal stresses X(x, t) 
are applied the chemical potential o(x, t) of the atoms at the boundary decreases by an 
amount [2, 3] 

7jx, t ) - - - - .Qo(x ,  t), 

where ~ is the atomic volume. Due to the action of the gradient X(X, t) a flow of atoms 
J(x, t) occurs in a thin layer of thickness ~ along the boundary 

J (x,  t) ~= D6 0~ (x, t) = O6 0~ (x, 0 
!~7" Ox T ~x ' 

where D is the self-diffusion coefficient along the boundary, ~ is the effective thickness 
of the boundary, and T is the temperature (in ergs). If we assume that the width of the 
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crack d remains constant, 

Y,q 

Fig. 1 

the velocity of the crack v is given by 

o • aa (x, t) ! 
~' = d  J ( x '  t) lx=vt =d'-~ ax .~=~t" (2 .2)  

where ~ is the shear modulus, and z = D6~/T. The actual stresses at the boundary a(x, t) 
are made up of the stresses (2.1) from the friction and the stresses ~1(x, t) due to the 
layer of deposited material (the material transferred from the tip of the crack and deposited 
ahead of it along the boundary, forming a layer of thickness h(x, t)) 

o(x,  t) = go(X, t) + a l ( x  , t). (2.3) 

The s t r e s s e s  f f , ( x ,  t )  can be c a l c u l a t e d  as  the  t o t a l  s t r e s s e s  from the  d i s t r i b u t e d  d i s l o c a -  
t i o n s  ( f o r  more d e t a i l  see  [1]) 

a,(x, t)= p(x', t)~E(~--v)[=_--i-p__x_--~TT]dx' , (2 .4)  
vt 

where @(x, t)= --Sh(z, t}/ax is the dislocation distribution density, and ~ is Poisson's ratio. 
The material balance equation takes the form 

ah(z ,  t) = _ f~a.r(x, t). = x o~ t) 
at ax p. ax ~ 

o r ,  t a k i n g  i n t o  accoun t  a/a t  = - - y d / d ~ ,  a /ax  = d/d~,  dh/d~ = - - 9 ( ~ )  

v9 d~ 2 = p(~)" (2.5) 

Substituting (2.5) into (2.4) and the result obtained into (2.3), we obtain for the total 
normal stresses ~(~) at the boundary 

q 

, 

a (~) = a o (~) - [3 a ~ (~') ~ -~ d~ , 
D 

(2.6) 

where o"(~) is the second derivative with respect to $, and ~ = • v)v. Equation (2.6) 
for c(~) must be solved with additional boundary conditions. The first condition (2.2) when 

= 0 can be written in the form 

a'(O) = vd~/• (2.7) 

Further, the chemical potential of the atoms when ~ = 0 at the boundary and at the tip of the 
crack should be the same, which is equivalent to the condition 

a(O) = 27 /d ,  

where y is the surface energy density of the crack. Moreover, 
should vanish 

~(oo) = 0. 
Integrating (2.6) with respect ~ we obtain the normalization condition for 

~[~ (~) a0 (~)l d~ = 0. (2 .10)  
0 

(2 .8)  

the stresses at infinity 

(2.9) 
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Equation (2.6) in its initial form does not enable one to use well-kno~m analytical methods 
of solution. Hence, we will carry out some preliminary conversion of the equation and the 
boundary condition. Putting ~(~) = o"(~)F~$, Eq~ (2.6) can be written in the form 

0 

(2 .11)  

Equation (2.11) is an equation with a Cauchy-type kernel [4], a solution of which, bounded 
at $ = 0 and { = ~, exists in view of (2.10) and is given by the expression 

0 

Introducing the new desired function u(~)  = o'(,~) - -  o 'o(~) ,  and the dimensionless variable 
= ~/=Vr~., we obtain 

Z [?"'~ d$" 
u" ( 0  + u , ~ ,  ~ = / (0, 

0 

(2~ 

where 

3 K 
B ~51~ ! (b) = 8,~V~ (b + 

The additional conditions for u(~), taking (2.1) and (2.7)-(2.9) into account, can be written 
in the form 

u(0) = u~ - -  (2y/d - -  K / / 2 - - ~ ) ;  (2 .13 )  

u(oo) = O; (2.14) 

u'(O) = u 2 -  ~V"~(vdWz + K / 2 R / ~ ) ,  (2 ,15 )  

3. We will now consider the solution of the problem. Equation (2.12) is satisfied on 
the positive semi-axis ~. We will extend the equation to the whole of the ~ axis by assum- 
ing the functions u(~) and f(~) to be zero when ~ < 0. As a result we obtain 

f dU u" (~) + u(~') ~ = / ( 0  + V(~), (3.1) 

where 

v (~) = 

o, ~ > o ,  

u (~') F-.=7, ~ < 0 .  
t0  

Applying a Fourier transformation to (3.1) 

[ion [5] for u(X): 

we obtain a Wiener--Hopf equa- 

( - - ~  -+- ~i sign ~)t~(s ---- ](~) + V()~) + u 2 - -  i s  ( 3 . 2 )  
oo 

Here the additional terms on the right side occur due to the integration of ~ u"(~)e{~d~ 

by parts taking into account the boundary conditions (2.13)-(2.i5). We will denote by 
G(%) = (--)~= 6 .~isign %) the symbol of the operator and represent it in the form 

G B) -= - -  ( ~  + 1) ( i  
.~i = ~  • t.~ _--__ 
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The main step in the solution of (3.2) is the factorization of G(I), i.e., the representa- 
tion of G(X) in the form of the product 

G(~) = ~ + 6 ) ~ - ( Z ) ,  

where G+(X), G_(~) are functions holomorphic and different from zero in the upper and lower 
half plane respectively. Using the C-theorem (see [5]), we obtain in this case 

~+(~) = (~ + i) exp  [r+(~)l = (~ + 0g+(~) ,  

G_(~,) = --(~, - -  i) exp  [ - r_ (z )  l - -  -(~. - ~)~_(z), 

where 

r+ (z) = ~. 
In [1 - -  (ai sign co -~ l) ( J  + i) -1 ] rico 

7 ~, • i0--~ 

We divide both sides of (3.2) by G_(1) 

G+ (~) u (~) = ~ : I  (~) / (~) _~ ~ 1  (~) V (~) T~ us ~ :1  (~) - -  i~Ul ~ :1  (~). ( 3 . 3 )  

Here G+(X)u(I) is a function that is analytic in the upper half plane, while the last three 
terms on the right side of (3.3) are analytic in the lower half plane. The mixed term 
GZa(%)/(~) can be expanded in a sum of functions that are analytic in the appropriate half 
planes 

C=~/(~)  = F+  (~) + F _  (~), 

where 

Separating in (3.3) terms with different analytical regions we obtain 

~+ (x) u (~) - F+ (D = a-~ (X) [ (X) + F. (~) + u,a-* (~) -- ~u,~J (~) 

Hence, using Liouville's theorem we have 

G+(~,)u(~,) - -  F+(~,) = C = const .  

From (3.4) we obtain 

ir I (Z) ~ GZI (m) ! (m) 
u ( D  = C C u  1 (~) + 2"---f-- ~. ~ § m - din. 

The behavior of u(X) as X § ~ is related to the behavior of u(~) as ~ + O, so that taking 
(2.13) and (2.15) into account we have in the neighborhood of infinity 

(3.4) 

(3.5) 

u (>~) = - f  u l  - -  ~ u~ - 0 . (3.6) 

On the other hand, expanding the solution (3.5) in powers of X-* we have 

[( ) i 1 u(k)=C~-1+ C --i 5~ Ing(k)d~ ~ (~)](~)d~ +O(~-3). (3.7) 

Comparing (3.6) and (3.7) we find the value of the unknown constant C = iu: and obtain the 
following relation between u, and u2." 

u ~ = u l  l n g ( ~ ) d i - - t  - - ~  
_ --oo 

Equation (3.8), taking into account expressions (2,13) and (2.15) for u~ and u2, is an im- 
plicit equation defining the dependence of the stationary rate of development of the crack 
v on the stress intensity factor K: v = v(K). In general, Eq. (3.8) can only be solved nu- 
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merically. For large crack velocities one can use the asymptotic expansion (3.8) in powers 
of v. Omitting the intermediate calculations we will merely give the final expression for 
v = v(K) for large crack velocities (we assume 2R = d) 

~2 t - -  V ( C  1 - -  - 7 -  \ ~  - -  1) 2 ~K ~ 
~2d3 ,  (3,9) 

where CI - i is a constant defined by the integral 

S ~4 + ~2 &o. 
C 1 = In  (012 -1- t)  2 

--ao 

Considering Eq. (3.8) as v § 0, we see that the stationary development of the crack is only 
possible at velocities greater than a certain critical value Vmi n 

V~Vmin~?•  3. 

Experimental investigations give v ~ K n, where n varies over a wide range. Thus, in Nikonel- 
718 alloy for large crack velocities n = 1-2.5 [2], which is close to the theoretical value 
n = 2 in (3.9). 
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